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THE STRUCTURE OF FREE VERTICAL SHEAR LAYERS
IN A ROTATING FLUID AND THE MOTION PRODUCED BY
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This paper considers axial motion in a rapidly rotating fluid of small viscosity. It is shown that
solutions for the structure of vertical free shear layers must be allowed to be singular at the points
where they receive fluid from a rising or spinning axisymmetric body. The possible types of singu-
larities are elucidated by the use of similarity solutions and an hypothesis is introduced to limit
their strength. Three particular cases of axially bounded motion are considered in detail; the
split disk, the rising disk and the rising sphere. The hypothesis is shown to lead to a unique
solution for the Stewartson layers. For the rising body, a Wiener—Hopf problem, which is
independent of the body shape, must be solved for the central part of the Stewartson layers.

Y B \

1. INTRODUCTION

p—

;E N When a body is moved slowly in any manner in a rapidly rotating liquid the boundary of
O H the Taylor column will be a detached viscous shear layer. By ‘slowly’ we mean that the
A= Rossby number U/LQ is small and by ‘rapidly rotating’ we mean that the Ekman number
O E = v/L2Q is small, where U is the velocity scale, L the scale of the body in a direction
E 8 perpendicular to the rotation —we term such a direction lateral—and v is the kinematic

viscosity of the liquid.

We are interested in this paper in the shear layers which form when a solid of revolution
moves with its axis of symmetry parallel to  and with the velocity of'its centre parallel to .
The Taylor column is then a circular cylinder touching the body of revolution at its

equator.
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598 D. W. MOORE AND P. G. SAFFMAN

Three methods have been used to discuss the shear layers formed in this circumstance.
The first method, used by Morrison & Morgan (1956) and by Stewartson (1957) is to
take the limit £— 0 in the exact solution of the full linearized Navier—Stokes equations

2@ A u=—Vp+rVau (1.1)
and divu = 0. (1.2)

Morrison & Morgan were interested in axially unbounded flow. Stewartson found the
exact solution for the split disk configuration described in §4. He proved that for this
problem the detached shear layer had a sandwich structure, a central shear layer of thick-
ness £* being sandwiched between fatter layers of thickness £*. The 1 layers were associated
with a large gradient of swirl velocity, which was continuous across the } layer. The 4 layer
was characterized by intense axial motion and carried as much volume flux as the geo-
strophic interior of the Taylor column. This flow has been recently studied experimentally
by Baker (1967) and Stewartson’s predictions have been confirmed.

Only problems in cylindrical geometry for which the exact solution of (1.1) and (1.2)
can be found by separation of variables have so far been studied in this way. However, this
method avoids the uncertainties (not always recognized) inherent in the more powerful
methods to be described.

Carrier (1964) has described a method of treating the shear layer which is not confined
to simple geometries. This is to approximate to (1.1) by neglecting derivatives parallel to
the Taylor column boundary. This approximation fails in the geostrophic interior, but
there the viscous term is in any case negligible. Thus the resulting considerably simpler
equations are valid everywhere outside the Ekman layers on the body surface and on the
ends of the container. The approximate equations are second order in the derivative
parallel to . Now as was pointed out by Greenspan & Howard (1963) and by Jacobs (1964 )
the Ekman condition remains valid so long as lateral rates of change are o(v~%).1'Since any
straight line in the shear layer parallel to  will meet the Ekman layer system in two points,
the Ekman condition provides sufficient boundary conditions. Thus one gets the geo-
strophic interior and the shear layer sandwich in one go.

The different thicknesses and dynamical balances of the { layer and the } layers suggests
that one should go farther and use equations appropriate to the separate layers. This is the
third method tried first by Stewartson (1966)} in his study of the shear layers generated by
the co-axial rotation of concentric spherical surfaces. The inner and outer layers satisfy
ordinary differential equations and could thus, if one had sufficient boundary conditions,
be discussed without difficulty. Unfortunately this is not so and one is forced to seek the
missing conditions by asking what restrictions the dynamics of the central 1 layer place on
the velocity field at its inner and outer edges. A systematic way to find these restrictions,
which emerge as jump conditions on the swirl velocity, was described by Stewartson.

The object of our work is to extend Stewartson’s work to the problem of a solid revolution
rising in a container (Moore & Saffman 1968 ; Maxworthy 1968). We do this in three stages,

T Rather than express this and subsequent similar estimates in terms of £, U and L we use this convenient
shorthand which, since E is usually the only small parameter, will not cause ambiguity.
{ But partially anticipated by Proudman (1956).
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in §§ 4, 5, 6, where progressively harder problems are studied. The advantage and power of
Stewartson’s method becomes apparent when one sees that, while the structure of the
+ layers varies considerably from case to case—their thickness is not the same and they can
even disappear completelyt—the structure of the § layer is virtually unchanged. In parti-
cular the } layer generated by a rising sphere is identical (apart from multiplicative scale
factors) with that generated by a rising disk of the same radius. The § layer does not, to
leading order, ‘see’ the body at all, the body shape being apparent only in the structure of
the 1 layers. All it does see is an annular region at the equator of the body where the Ekman
layer on the body is separating from the surface. This joining region will be on a lateral
scale smaller than v* and so will appear as a singularity in the % layer solution.

Mathematically, we have to solve a Wiener—Hopf problem—though the solution of a
single such problem, which is given in detail in § 5, gets the structure of the § layer for all
rising bodies of revolution, whereas the second method would involve the discussion of a
different, more difficult such problem in each case. As is usual in a Wiener—Hopf problem,
one must specify the strength of the singularity at the sharp edge before the solution can
be found. This is the real problem which has to be faced in extending Stewartson’s
method.

Information about the singularity should really be sought by working on a finer scale,
that is, by examining the dynamics of the joining region itself. We have not been able to do
this and we have instead approached the problem indirectly. In § 3 we look at what sorts
of singularity the solutions of the 1 layer equations can have and we pick out the ones which
can occur at a sharp edge. There is an infinite sequence of possible singularities in which
the axial velocity in the § layer goes to infinity like z~%, z7% z7%, ..., where z is axial distance
from the singularity. All these singularities are consistent with the 4 layer equations and
with the boundary conditions and we have been forced to impose an ad /oc condition on the
radial pressure gradient to limit the strength of the singularity which can arise. We insist
that the radial pressure gradient be not larger inside the 4 layer than it is just outside, so our
condition is like the Kutta—Joukowsky condition of airfoil theory.

In § 7, we consider the case where the axial separations of the boundaries are so large that
the 1 layers have spread viscous effects throughout the Taylor column. Finally in §8, we
re-derive the solution in the unbounded case and discuss why boundary-layer methods are
not adequate.

2. THE SHEAR-LAYER EQUATIONS

Let x, y, z be orthogonal coordinates, such that the surface x = 0 is the Taylor column
boundary and the surfaces z = constant are planes perpendicular to the axis of rotation.
Then if (z,v, w) is the velocity of the liquid at (x, y, z) and p is the reduced pressure divided
by the density, the shear layer equations are

1 dp, v du
T O R 3

+ The breadth of the inner layer depends on the shape of the solid of revolution near its equator. If in

cylindrical polars z ~ (r—a)", where a is the radius of the equator and where 0 < n < 1, the inner layer

has thickness v!@+3, For a lenticular body, n = 1 and we get a } layer. For a body of finite curvature like
a sphere, n = } and the inner layer is of thickness v7.

—2Qv = (2.1)

76-2
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600 D. W. MOORE AND P. G. SAFFMAN
19 v %
20u = T 3§+ 2 Gy (2.2)
Y v 0w
0= a‘Z*h«»z e (2:3)
' ' u  d Jw
(ORI X() o W _
and h pe +9y (hD) + "V K o 0, (2.4)
where %, (x,y), hy(x,y) and f; = 1 are the line elements and where
h? = 1(0,9) (2.5)
and Y = hy(0,y). ‘ (2.6)

Now the viscous term in (2.1) can be shown to be negligible. Let 8(v) be the shear-layer
thickness, so that d/dx ~ 1/6 and assume that d/dy ~1/L, the lateral scale. Then from (2.2)

WA
u~7oT 05 (2.7)
Thus the viscous term in (2.1) is
v i vy
LQ§? T Qo
so that this is negligible provided that )
' voovE
d > max (m, Q,%) . (2.8)
Since, by hypothesis
E=v/[?Q<1 (2.9)
it is negligible provided that 0> Q. (2.10)

This inequality will be satisfied if the shear layer is much thicker than the Ekman layer,
which will prove to be the case.
If we drop the viscous term in (2.1) and eliminate z and p from the resulting equations,

we find that b Pw 0 o
0 a8 = 2Q— (2.11)
v % ow

In deriving equations (2.1) to (2.4) from the Navier—Stokes equations, we have neglected
contributions to the viscous forces from first derivatives with respect to x and we have
neglected the variation of line elements across the shear layer. The consequent error in
(2.11) and (2.12) is O(d/L) and is at most as great as the relative error arising from the
approximation to (1).

Ifin both (2.11) and (2.12), the two sides of the equation are comparable, then we must
have v/w ~ 1 and & ~ %, This is the } layer. If, as in the inner and outer layers » > w, then

0= w/oz (2.13)
: v Jw

and clearly ' 8> vk,
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FREE VERTICAL SHEAR LAYERS IN A ROTATING FLUID 601

In the axi-symmetric problems discussed in detail we use cylindrical polar coordinates
(r,0,z). The axis Oz is parallel to Q and coincides with the axis of symmetry of the body of
revolution. The equator of the body is 7 = 4, z = 0 and we write x = r—a. Then (2.11) and
(2.12) become

Pw w
v w
and V'g)}g :__2Q-9_2. (2.16)

We shall use lower case letters for quantities in the % layer and corresponding capital letters
for the quantities in the } layers and in the geostrophic region, since the approximation
(2.13) makes the swirl velocity there a function of x alone.

3. SIMILARITY SOLUTIONS

The velocity field in the 4 layer satisfies the equation

By QQ 3)(
= 12 (3.1)
where ¥ = w1v. (3.2)

Our objective in this section is a systematic classification of the similarity solutions of (3.1).
Let us introduce a similarity variable 7, clearly suggested by the form of (3.1), defined for

all z(> 0) by . (29) _, (_29)* (8.3)

vz z

The existence of similarity solutions involving 7 was noticed by Morrison & Morgan (1956).
For z < 0, we construct solutions from the fact that y*(x, —z) is a solution of (3.1) if
x(x,2) is.

We can verify that, for any real constant m,

Xn(%,7) = 27h(T) (2> 0), (3.4)
is a solution of (3.1) provided that #,, satisfies the ordinary differential equation

L,h, _dd/z3 $i Td(f’”—klm/z = 0. (3.5)

The general solution of (3.5) is obtained as a contour integral by Laplace’s method and is
b
h (1) =4 f et et p=3m=1dp, (3.6)

where 4 is a complex constant. The end-points of the path of integration in the p plane

must be chosen so that .
" [p-imet*etir]e =0 for all 7, (3.7)

and, unless 3m is integral, the p plane must be suitably cut.
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602 D. W. MOORE AND P. G. SAFFMAN

If m > 0 possible values for a and b are 0o, co €3 and co e37i and in figure 1 we sketch
three possible I'}, I';, and I';, giving, because of the cut, three linearly independent solutions
of (3.5).7

When m < 0 we can choose a = 0 as the starting-point of the contour and we get the
three contours shown in figure 1.

oe? .. .
contour giving solutions
bounded for all 7
branch cut
[e o]
(v)
we‘%ni

Fiure 1. (a) Contours in the complex p plane which give solutions of (3.5) when
m > 0. (b) Contours when m < 0.

In this report we are interested in detached shear layers, which means that 7 can range
from —o0 to +o0o. The requirement that % is to be bounded as 7—>4-c0 places a severe
restriction on the contour used in (3.6) since, unless p is real at every point of the contour,
the integrand will become exponentially large as either 7—>--00 or 7—>—o0. No choice of
contour will satisfy this requirement when m > 0 and for m < 0 the only possible contour is
the positive real axis. Thus we have shown that

(a) Equation (5) has no solutions which are bounded in the entire range —o0 < 7 < 00
when m = 0.

T If 3m is integral the cut disappears and the three solutions satisfy a linear relation obtained by applying
Cauchy’s theorem to the contour obtained by joining the three contours I'; at their extremities. This is
obvious when m = —§, for which value (3.5) is really only second order. We can express the solutions of (3.5)
for other values of m which make 3m integral as derivatives or integrals of the two independent solutions
when 3m = —1 by using the result that da,,/dr satisfies L,,_; dk,/dr = 0.

m—g
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FREE VERTICAL SHEAR LAYERS IN A ROTATING FLUID 603

(b) When m < 0 the unique solution of (3.5) bounded in —c0 < 7 < o0 is a multiple of

H,(7) = ["ererpon-idy. (3.8)

The asymptotic behaviour of (3.8) as 7—>-00 is easily shown to be
H, ~7¥meimmi(—3m—1)! as 7->00 (3.9)
and H,~ (—1)me-¥mmi(_3m—1)! as 7->—00. (3.10)
Thus Y~ 73 (2Q)m ebmmi (—3m—1)! as T->00 (3.11)
and Y~ (—p)3m (2Q)m e~¥mmi (—3m—1)! as 7->—o0. (3.12)

Note that the asymptotic value of y,, as 7—>-o00 is independent of z and that the decay is
only algebraic. This will have important consequences in infinite regions where the 1 layers
have a similarity structure everywhere, and not just near the joining region.

We can use (3.11) and (8.12) to determine the behaviour of the similarity solutions on
the plane z = 0. Suppose Az"H,,(7) is such a solution, where 4 = |4| e/. Then on z = 0+

we have w~ Cp¥mcos Emn+-£) (9 > 0)} (3.13)
v~ Cp¥msin (3mn+£) (9> 0) .
and w~ C(—n)*cos (—3mm+f) (1 <0) 1 (3.14)

v~ C(—7y)%msin (—3mm+p) (5 < 0),)

where C = |4]| (2Q)™ (—3m—1)!. The change of phase in the trigonometric factor is a
consequence of the fact that, in general, w and v have no symmetries about 7 = 0.

A situation which we will encounter in specific problems is as follows. The half planet
z = 0, 7 < 01is that portion of the surface of a moving body inside the 1 layer. Consideration
of the Ekman suction equation shows that, in general, a swirl velocity v in the 1 layer
requires an inflow o(v) (we give precise results in later sections) so that since w = O(v) in

1
the 1 layer, we must have w=0 on z—=0 (7<0). (3.15)

The velocity field in the } layer is analytic away from the body so that, in particular,
w,v are continuousat z=10 (5> 0). (3.16)

If y,,(7,z) is a solution of (8.1), so is ¥} (7, —z) and thus for z < 0 the general similarity
solution is of the form A’(—z)m H¥(r') where 7" = 5(2Q/—z)*. Thus on z = 0—, we find
from the asymptotic expansions that

w=Cnp’mcos(—smn+p) (9> 0)1

v = C'pnsin (—3ma+4) (1> 0)] (8.13)
and w= C'(—g)%cos (mn+f") (7 <0) :
v=C'(—p)*sin Gma+f) (1 < 0).} (3.14)

The boundary condition (3.15) shows that
cos (—3mm+p) =0, cos(3mn+p) =0, (3.17)

t We shall see in §6 that even for a sphere the portion of it inside the } layer can be regarded, at least
to leading order, as a plane perpendicular to the axis of rotation.
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604 D. W. MOORE AND P. G. SAFFMAN
while condition (3.16) gives C = C”" and

Smn+f = —3mn+ '+ 2nm (3.18)
where 7 is an integer. Hence m =3p, p integral (3.19)

so that since m < 0 for a solution bounded for all 7

=k (3.20)

o=

— 1
m=—%, —

Thus only certain values of m and consequently only certain singularities can arise for
boundary conditions (3.15) and (3.16).

It can be verified that if m = — %, —2, ...
w=0 on z=0 (7>0) (3.21)
and that w is antisymmetrical and » symmetrical about z = 0; while if m = —%, — 1, ...
v=0 on z=0 (7>0) (3.22)

and w is symmetrical and v antisymmetrical. Sometimes (3.21) or (3.22) emerge as require-
ments by virtue of symmetries in the problem. The ‘split-disk’ studied in § 4 is a case where
(3.21) must hold. On the other hand, for a disk rising without rotation in an unbounded
fluid, the symmetry can be shown to imply (3.22). Indeed, the similarity solution with

m = —% was shown to arise in this problem by Morrison & Morgan (1956).
The particular solution for m = — %, which is
¥ = (2Q)} Oz} f Ceirerdpy (3.23)
0
= (2Q)}CR(y,z) say, (3.24)
is of special interest. By a change of variable
1 ©
R(n,2) = - f e da. | 3.2
1) = o [, e da (3.25)
© 1 ® m
R(y,2)dy = »~~—fﬁf 20 () 7 da = -, 3.2
Thus By (n z) n 20)H o 7 (x) e o 20! (3.26)

so that the vertical volume flux per unit length in this shear layer is independent of z. Thus
the solution (3.23) represents the motion due to a line source of strength 27Cv* per unit
length located at # = 0, z = 0. The fluid for the source is provided by mass flux in the two
Ekman layers on z = 04, # < 0, which are of zero thickness with the scaling that leads
to (3.1).

The similarity solutions with other allowable values of m can be shown easily to have
zero vertical volume flux across a plane z = constant, with the exception of m = — which
has a divergent volume flux because of the slow 77 decay. For this reason, we do not expect
the m = —{ solution to occur to leading order in problems amenable to a boundary-layer
type analysis, and we shall see later that it is in fact excluded at least to leading order by the
‘Kutta condition’ mentioned in § 1 for flows which are bounded in the vertical direction.
Unbounded flows cannot be solved by methods utilizing boundary-layer type approxima-
tions (see § 8).
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FREE VERTICAL SHEAR LAYERS IN A ROTATING FLUID 605

4. THE SPLIT-DISK PROBLEM

The first problem we will examine in detail is one solved by Stewartson (1957). The rigid
planes z = 0 and z = % have concentric circular central portions, each of radius @, which can
be rotated at different angular velocities from the rest of the plane. Suppose both outer
portions rotate with angular velocity €2, while the central disks r < a, z = 0, £ have slightly
different angular velocities Q(1+¢"), Q(1+¢) respectively. The problem is to find the
motion driven in viscous fluid filling the space between the plates.

Let (Ug(r),Vg(r), W(r)) be the geostrophic interior. Since p = p(r), the tangential com-
ponent of the geostrophic flow equations gives

Uy(r) = 0. (4.1)

There is a radial flux inwards through the Ekman layers on the upper and lower plates of
amount, per unit length of circumference,

S/} (Vp—eQr),  $(v/Q)F (Vo—e'Qr). (4.2)

We can now find the geostrophic interior by demanding that the net radial flux in the two
Ekman layers is zero, that is

L0/} (V= Q)+ HIQ Tyt ) =0 (0 <7 < a), (4.3)
so that Vo(r) = 3e+e)Qr (0<r <a). (4.4)

Thus the core of the Taylor column rotates with the mean angular velocity of the two disks.
By continuity

Welr) = 30Q) e—¢)  (0<r<a), (4.5)
so that there is an O(vt) axial drift from the slower to the faster disk. For r > 4, the same
argument gives Ug(r) =Valr) =Wy(r) =0 (r>a). (4.6)

Thus, we have solid body rotation for r > a.

Both V(r) and W(r) are discontinuous on the Taylor column boundary 7 = a and the
real problem is to see how viscous forces smooth out the discontinuity.

We first remark that W,/V, = O(1}) so that the outer portions of the shear layer must be
of the second type discussed in § 2. Thus

%I—z/:o and U—_-é%j%%{, (4.7)
where Xx=r—a (4.8)
The radial flux condition now becomes, for x < 0,
— 0/} (V—¢'Qa) — Hp/ Q) (V—eQa)+ s ST =, (4.9)
and the solution which matches smoothly to the geostrophic interior as x/vt - —o0 is
V= L(e+¢)aQ+ Aexp (pxvt), (4.10)
where p? = 2Q%/h. (4.11)
For x > 0 we similarly have V = Bexp (—px/vt). (4.12)

77 VoL. 264. A.
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606 D. W. MOORE AND P. G. SAFFMAN

Before proceeding with the solution we remark that: () the error in (4.9) and consequent
error in (4.10) and (4.11) is O(»t); (b) these outer shear layers have thickness vtk /QY. They
can be regarded as thin only if WO <

that is if hla < E-%. (4.13)

If h/a ~ E-* the whole interior of the Taylor column and a comparable exterior region are
influenced by viscous forces. We can anticipate that the maximum thickness of the 1 shear
layer is O((vh/Q)}) and when &~ aE~% this is O(aE?). Thus there will still be thin 1 layers at
the Taylor column boundary if £¢ < 1 and not until such large separations that k/a > E-!
will the disks cease to influence each other (see §§ 7 and 8).

The next step in solving the problem is to find 4 and B. Itis clear that no choice of 4 and B
will make V analytic at x = 0, so that there must be an inner } layer to act as a buffer
between the 1 layers. Stewartson (1966) has remarked that the correct boundary conditions
on V' must be deduced from the properties of the % layer and has given a method of deter-
mining the correct boundary conditions which we follow closely. We shall find for the
present problem, but not in general, contrary to what is sometimes implied in the literature,
that continuity of I and dV/dr at x = 0 is required.

We introduce boundary-layer variables for the + and 1 layers £, 5, where

E=xpt and 7=, (4.14)

so that § = pvis. If we denote the velocity field in the § layer by (u, v, w) we must demand
a matching of the layers, expressed symbolically as

lim (U, V, W) ~ lim (u,v, w). (4.15)

£—~+0 N>t

If we expand V(£) for small { we have
V~4(e+e)aQ+ A1 +pt+ 3p%24...) as E— O——l

4.16
and V~B(1l—pi+5p%2+...) as E>0+. J (4:16)
Thus v~ 3et¢) aQ+ A1 +ppris+ Lpp2¥4..)  as p—>—o0) (4.17)
and v~ B(1—ppis 4+ Lp2p2t4-..) as p—>+o0. J '
This suggests that we write
v = 04(1,2) 0,1, 2) 051, 2) + .. (4.18)
and correspondingly w = wy(n, z) +w,(n, z) + wy(y,z) + ... (4.19)
where for a,, b, determined by (17)
v,~a, it as f-—>—0o0 l (4.20)

and vy~b, as g0

Clearly from the matching v, and hence w, for finite 5 are O (v#"), since it can be anticipated
that 4 and B are of order unity.

1 Actually, the error O(v%) in (4.16) will have to be considered when v, v,, ... are being sought. This is
because v, is O(vt). The difficulty is only one of detail.
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FREE VERTICAL SHEAR LAYERS IN A ROTATING FLUID 607

Before we can apply Stewartson’s method we must complete the specification of the
1 layer problem by finding boundary conditions on z = 0, . Now expressed in terms of 7
and neglecting the curvature of the coordinate system, the Ekman suction condition becomes

1 v¢ 0
w=+5517 OB Z=, (7 =0), (4.21)
so that for == 0, wy =
wy =10 on z=2.  (4.22)
220t gy

However, w, will in general be singular at 7 = 0. The region where the Ekman layer and
the ¥ layer join can be only O(»?) in breadth so that the 4 layer equations ‘see’ this join as
a singularity (figure 2). The similarity solutions developed in §3 show that the ¥ layer
equations permit singularities which are arbitrarily strong, so we cannot limit the strength
of the singularity by appeal to the dynamics of the 1 layer. Ideally, we would limit the
strength of the singularity by insisting that the % layer should fit smoothly onto the joining
region—but we have not been able to do this.

o)
singular region

_— of  layer

inner disk L o outer disk

1
V&

Ficurke 2. Join of the } layer to the Ekman layer. The dotted lines enclose the region of more intense
shear associated with the singularity at the split.

Instead we impose on the } layer solution the extra requirement that its radial pressure
gradient be at most of the same order in the large parameter v~! as the radial pressure
gradient in the rest of the flow. This condition removes the non-uniqueness of the } layer in
a way similar to that in which the Kutta—Joukowsky condition removes the non-uniqueness
in the potential flow around a strip—if the condition were not satisfied, there would be an
adverse pressure gradient O(v~1) at the trailing edge. (In the three problems considered in
this paper, the ‘Kutta condition’ is entirely equivalent to an hypothesis of minimum
singularity.)

77-2
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608 D. W. MOORE AND P. G. SAFFMAN
Since —2Qv = — dp[ox,

the Kutta condition is equivalent to requiring that the swirl velocity be at most of the same
order in v~!in the % layer as in the rest of the flow.
The similarity solutions of § 3 show that

v~ O (m=—14,—%,...) (4.24)

as 7/z¥—+00. Since m < 0,v has its largest order of magnitude at the smallest value of 7 for
which (24) is still applicable. Just outside the joining region x = O(v#), so that y = O(¥%).
Now, since z = O(1}), 5/z¢is O(1) so that (4.24) will not be a good numerical approximation
to v. However, since all the terms in the asymptotic expansion are O(1) it is reasonable to
suppose that (4.24) still gives the order of magnitude of v. Thus v = O(Cvi™) where the
% layer meets the Ekman layer. If we apply (4.24) to the terms of (4.18), using the orders of
magnitude for a,, b, determined by the matching requirement we find v, ~ y#®@+6m_ The
orders of magnitude are listed in the following table:

m=—% m=—% m=—1
n=20 % -3 3
n=1 V1w p-t ViF
n=2 1 V—% V—‘.]i

Thus the Kutta condition requires that the n = 0 and n = 1 fields be regular at 7 = 0 and
allows the n = 2 field to have at worst an m = — 4 singularity, which corresponds to a
d-function singularity in w. It is worth noting that this means that the n = 2 velocity field
can draw a flux of amount »* from the joining region, which is compatible with the flux to
the joining region from the Ekman layers on the disks. It is sometimes asserted that the
% layer occurs because of the need to transport fluid from one Ekman layer to the other.
This is misleading and will lead in general to errors if the orders of magnitude in the 4 layer
are fixed in this way. In fact, we shall find that in general the flow in the } layer is recirculating
to leading order in v~!, and is of a larger order than flux requirements would suggest.

We can now apply Stewartson’s method to determine jump conditions. We have

Py dw,
=20 (4.25)
83 h
so that i f v dz = — 20w, (1, k) — wy(7, 0)]. (4.26)
0

Our discussion of the singularities of the n = 0 velocity field coupled with the boundary
conditions (4.22) show that
wo(n, h) = wy(y,0) =0 all 7. (4.27)

h
Hence f vodz = dO+dO g +dO 2. (4.28)
0

But v, is independent of z as y—4-00, since v, must match to the } layer swirl velocity, so
that (4.20) gives d{® = d§® = 0 and

hvy—d® as p—>-oco. (4.29)
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FREE VERTICAL SHEAR LAYERS IN A ROTATING FLUID 609
Thus t(e+¢)aQ+4 =B (4.30)
which is the first required jump condition. Itis equivalent to requiring that " be continuous
at{ = 0.
A similar argument applied to v, gives
Apvi's = — Bpyis (4.81)

which gives the second jump condition, equivalent to requiring continuity of dV/drat§ = 0.
The £ layers are now completely determined and

V=14(e+e)aQfl —fe#} (£<0),
V=1(e+e)aQe?t (£>0). }

In the special case ¢+¢" = 0, in which the disks have equal and opposite rotation, the
+ layer disappears. In this case the core of the Taylor column has the same angular velocity
as the exterior rigid rotation, so that the } layer in this problem is associated with a dis-
continuity in the geostrophic swirl.

We can easily find W and the result is

(4.32)

W =—"(¢+¢) 1t Q¥pa (1 —g}—?) e Pl (4.33)
so that there is a non-constant flux
—4ma®(e+¢") (vQ)*E (1 —%Z) (4.34)

in the % layers.

It remains to determine the structure of the 4 layer. Clearly v, = d§*, wy = 0 and v; = d{Vy,
w; = 0. Thus the n = 2 velocity field gives the structure of the % layer.

It is determined by the boundary conditions

w,=C"8(y) on z=0, w,=Cd(y) on z=nh (4.85)
and vy~ +by? as g 400, (4.36)
where in view of (17) = L(e+¢’) poh. (4.37)

The flux into the § layer from the Ekman layer on z = 0 is 27av*C’ and the flux into the
1 layer from the Ekman layer on z = % is —2rav*C. Now in view of (4.5) and (4.34) the
Ekman layer on z = 0 is receiving a net flux na%’ (Qv)?* from the geostrophic flow and the
1 layers, while the Ekman layer on z = 4 is receiving a net flux 7a%(v€2)*. Thus by continuity

C'= Qic’a and C=— Qe (4.38)
(It is perhaps worth mentioning that (4.35) and (4.38) can be derived formally from the
Ekman suction condition. Thus on z = 0,

i d
W=z =7 - — —%—e'(vQ)‘%a—r [rH(a—7)],
and hence on differentiating the Heaviside function, replacing r by 7, and equating
i ¥

coeflicients of v¥, we have w, = -+ L' Q 8(p)

and similarly for z = A4.)
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610 D. W. MOORE AND P. G. SAFFMAN
Let y = w,+1v,. Then
By .y
%—5 = — 2.(21?2 . (4:'39)

We define the Fourier transform by

N~ i 00 io
=3 f e, z) dy (4.40)

and on taking the transform of (4.39) we get

s ad |
| 3—26 = —50¥ (4.41)
so that ¥, z) = A(a) e=*#/22, (4.42)

Itis clear from the boundary conditions that w, is an even function and v, is an odd function
of 5. Thus y is real and so

w,y(, z) = f " cosax (i, 2) + i —a, 2)) da. (4.43)
0
The boundary conditions on w, at once give
Al@)+A4(—a) =C'|m (x> 0) (4.44)
and A(x) e=**22 4 A(—a) e*M22 = Clm (a > 0), '
C'exh22_C
so that A) = Srsinh («¥/20) (x> 0)
(4.45)
d A(ma) = CZC e o)
an ~ 2 sinh («3%/2Q) :
The conditions (4.36) require that A(a) be singular at « = 0 and, precisely,
A(x) ~2b[na® as a—0, (4.47)
so that from (4.45) C'—C = 2bh/QQ). (4.48)

We can easily verify that the values of C’ and C given by (4.38) satisfy this requirement.
This is not fortuitous, but a consequence of the identity

’ (%)-}m —h (g%)_w =20 f :o [w(n, k) —w(7,0)]dy (4.49)

satisfied by solutions of the } layer equations.
Thus the } layer velocity field is given by

. w . e—oc3z/20 6‘, ea3h/ZQ_|_€
wy+iv, = $¥Qta f e i ( )

— 2msinh (a34/2Q)) da (4.50)

and it is a straightforward matter to evaluate the integral in (4.50) be residues to recover
Stewartson’s (1957) results.

One feature of the solution is worth mentioning. The contribution, y(¢’) say, to w,+1iv,
from the term in (4.50) involving ¢’ can be written

1 V% Q%(‘:/d :Jvco e—ocSZ/ZQ J»oo i e(—%a&z—oﬂh)/ﬂ }
== — C N

, .
XE) =5 — L i da— | i Ao
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so that on expanding the denominators, we get

303’ o © o ©
X(el) — % v Q €a {f e~y ( z e—(oc3z—2noc3h)/20) da__f el ( z e(oc3z—2noc3h)/2§2) dOC} .

m 0 n=0 0 n=1

If we use the form given in §3 for the flow field due to a line source, we can write this as

% % %’ 0 % % %’ 53}
(&) = Q%Q)«%e_ﬁl EOR(”,Z+2nh)_@%Z_IL£}7?6_{Z S R¥(y, —z+2nk). (4.51)
n= n=1

According to the definition of R—see (3.25) and (3.26)—y(¢’) is due to a line source of
strength v#Q¥¢’a per unit length at 7 = 0, z = 0 (which gives an upward flux of one-half
this amount) and equal image sources at 7 = 0, z = 4 2nh. y(¢) can be displayed similarly.
This representation brings out clearly the singular nature of the % layer at the plates. More-
over, it makes it clear that the discontinuity is responsible for the singularity since, from
(51), the singularity at 7 = 0, z = 0 disappears when ¢’ = 0.

5. THE RISING DISK

The plane z = —#, is rigid and rotates about Oz with angular velocity . The plane
z = hy is either a second rigid plane rotating about Oz with angular velocity Q or it is a free
surface (g/af2?is assumed to be so large that curvature effects are negligible). The rigid disk
z=0, 0 <r<a is rising with a prescribed velocity U (< a{2) parallel to Oz and has a
prescribed angular velocity €2(1+-¢) about Oz.

The geostrophic motion and the resulting forces on the disk were determined by Moore
& Saffman (1968). In particular, for the case of a disk rising under its own buoyancy the
condition that the torque be zero determines ¢. When the upper surface is rigid ¢ = 0, but
when it is free it follows from their analysis that

¢ =—UE%/a. (5.1)

We shall not impose this condition on ¢ in the present calculation, but we must bear in mind
that ¢ can be aslarge as v—%, a point which is important when the ordering is being carried out.

The geostrophic motion can be determined by considering the flux in the Ekman layers
and, for 4, >z > 0,

_1 (é)VG—% (6)% (Vo—eQr) = 3Ur (0<r<a), (5.2)

since U; = 0, where @ = 0 if the upper surface is free and ¢ = 1 ifit is rigid. Thus
—r(Q)H{U—eQ(/Q)}}

Vior(r) = 140 (0<r<a), (5.3)
while for —A; <z <0

Vos(r) = 37 (Q)H{U+eQu/Q)}} (0<7r<a). (5.4)
Note that the swirl velocity of the geostrophic flow is now O(v~*). Finally, for r > ¢ and
—hy<z<hy v, = 0. (5.5)

We remark that when @ = 1 and ¢ = 0 the geostrophic swirl is antisymmetric even when
hy = hy. However, the } and % layers will nof in general possess this symmetry, which is
purely a property of the geostrophic flow.


http://rsta.royalsocietypublishing.org/

0
%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

612 D. W. MOORE AND P. G. SAFFMAN
The } layers are obtained just as in §4 and we find
Vi(€) =Vor(a) +dgetrt (z2>0,£<0), (5.6)
Vy(E) = Vipla) -+ Apctat  (z< 0, £ < 0) (5.7)
and V() =Be? (£>0), (5.8)

where p, pp and p are defined by (5.28) in terms of 4, &, and A. Once again, the difficult
part of the calculation is the determination from the } layer equations of jump conditions.
If we expand the 1 layer solutions about § = 0 and replace § by 7 in the expansions we find
that the § layer velocity field can be decomposed into components just as in (4.18), (4.19)
and (4.20) and we now follow that analysis closely. However, v,(7, z) and w,(y, z) are now
O (visn=6),

We now must examine the possible singularities of the velocity field v, at = 0 and z = 0.
The similarity solutions of § 3 show that in addition to the type discussed in §4 a new series
is possible in which

v~ (m=—§, — 5, ...).

The fact that the geometry of the boundaries near the singularity differs from that of the
split disk is responsible for this new series of values of m. In particular, the weakest possible
singularity is less strong than the weakest singularity for the split disk, and this permits
a stronger % layer to appear.

An argument like that of §4 gives the maximum orders of magnitude of v,, shown in the
table below, in the region where the § layer meets the Ekman layer:

m=—% m=—% m=—%
n=20 VTiE ViE Viy
n=1 p-t VTiT ViE
n=2 v-iE v-3 ViE

Now the swirl velocity in the region exterior to the shear layers is O(v~%) so that the Kutta
condition requires that (a) v, and w, be regular aty = 0,z = 0; (b) v, and w, have at most an
m = —% singularity corresponding to singularities of v; and w; on z = 0 like |»|~*; (¢) v, and
w, can have in addition to the m = —3 singularity an m = — } singularity, correspond-
ing to a d-function behaviour of w,,.

The boundary conditions on v,, w, follow from the Ekman suction relations. These are

=

. 1/v 3 1d 2 —
w~U*i§(§) (=) on z=0x (r<a), (5.10)

for rigid surfaces

1

1d kg
;a—r(w) on z= —h, (all 7), (5.9)

If the upper surface is free, the condition there is w = 0. Changing to the boundary layer
variable 7, inserting the expansion (4.18) and (4.19) and the dependence on v required by
the matching with the }-layer solutions ((5.6) to (5.8)) we find (see (4.22))

wy=1w, =0 on z=hy, —hy (—o0<p<o0),)

and z=04+ (9<0), J (5.11)
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Qvt v,
2Q% g
on the appropriate surfaces, where @ = 1 unless the upper surface is free where it is then
zero. Note that to this order the velocity of rise and the relative rotation of the disk do not
enter the boundary conditions for the § layer velocity field, which is therefore determined
to this order by its matching with the } layers. Since the error in the % layer equations is
O(¥) (see §2), the pairs w,, v, for n — 0,1, 2, satisfy
P, _ % Pw,
an® oz’  op?
We can now derive some jump conditions across the central layer. Integrating the first
equation of (5.13) from 0 to /4, and —/j, to 0, we obtain

and wy =+ (5.12)

w,
=207, (5.13)

0

93 [hy 93 o ,
e f vodz = 2Quw,(n,0+) and 7 f—h vodz = —2Quw,(n,0—).  (5.14)

Now wy(y, 0) vanishes for 7 < 0 and is continuous across z = 0 for # > 0. Hence,

93 [hy '
o f_h sodz = 0, (5.15)
so that on integrating we have
b ’
j vodz = diO +dO g -dOp2. (5.16)
_hB
By definition v, is bounded at +oo (cf. (4.20)) so that d{® = d{¥ = 0 and we deduce that
by (Vor(0) + A7) +hy(Vip(0) + 4p) = kB (5.17)
or equivalently hyVp(0) + kg V5(0) = AV (0) (5.18)

so that we have not been able to prove continuity of ¥ by the present argument.
We can apply the same argument to v; and w,. The singularity of w;, at =0, z =0

occasions no difficulty because the m = —$ singularity gives a w; continuous across z = 0.
Proceeding as before, we find B [hy
Wf_h vy dz =0, (5.19)
from which we deduce ?
hT
f v, dz = d{P 4 d{Vy+d§P n>. (5.20)
...hB
Matching with the conditions at 5 = 400, we find d{l’ = d{’ = 0 and
hy Appr+hpAdgpp = —hBp, (5.21)
or equivalently hy Vi(0)4hp V5(0) = AV'(0). (5.22)

The condition (5.22) means that the total tangential stress is continuous across the inner
layer.

A physical argument for (5.22) is as follows. The net flux of angular momentum from the
1 layers into the 4 layer by the azimuthal viscous stresses across the vertical sides (per unit
length of circumference and per unit mass) is

h h
f TV%dz—l—fihBV%dz—f ‘ v%dz. (5.23)

0 ~hy

78 VoL. 264. A.
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614 D. W. MOORE AND P. G. SAFFMAN

Using the orders of magnitude for the } layer which are appropriate at the central edges,
we obtain that (5.23) has order of magnitude vhU(Qa?v)}[6; ~ v*. This angular momentum
flux balances the net flux of angular momentum convected into the % layer by the total
radial flux (this is proportional to the total mass flux into the } layer multiplied by the
change in the absolute rotation velocity (£24;) and is of order UhL2d; ~ %) plus the torque
on the parts of the disk and end walls covered by the % layer (this is proportional to the
stress across the Ekman layer times 0y and is of order UQady ~1?). There are also terms
proportional to the squares of the perturbation velocities but these are ignored on the
assumption of zero Rossby number. From the dependence with v, it is clear that the con-
servation of angular momentum requires that (5.23) vanish, from which follows (5.22).
(We have not discovered a physical explanation of condition (5.18) on the velocities, but
as will be seen below it appears that the Kutta condition imposes restrictions which enable
(5.18) to be satisfied identically, so that it is in a sense superfluous.)

The two relations so far obtained between the three constants 4, 4,, B are not sufficient
and a third independent relation is required. We can apply the above argument to v, and w,,.
It is more difficult because of the more complicated Ekman condition (5.12), and because
the J-function or source singularity of w, at the edge must be taken into account. We do not
give the details, because the end result (see (5.30) below) is essentially an equation for the
unknown source strength and is a statement that mass flux is conserved in the § layer and
thereby gives no further information.

It is therefore necessary to argue differently and use the results of the Kutta condition,
according to which v, and w, are non-singular. A solution of the } layer equations, which is
free of singularities, has bounded v, as 7 —+-00, and satisfies the boundary conditions on w,,
is vy = constant, w, = 0. It seems plausible (and we will shortly prove conclusively) that
this is the only solution with these properties. Clearly if this is so, we must have

Vr(0) = V3(0) = V(0). (5.24)

The jump condition (5.18) is now redundant and we are left with the required three
conditions to determine the } layers.

It is perhaps worth stressing that 7’ is not continuous across the 5 layer. The condition
(5.22) is a weaker condition on 7’ which implies merely that the net tangential viscous stress
is continuous across the 1 layer.

We can now easily find the constants 4,, 4, and B and we have

ap=B1+%7 [U eQ( ):I/lJrQ (5.25)
and Ay = B—an [U—|— Q( ) ]/2 (5.26)
a Q Yihppy ¢ ¥ ¢
U 30 e L
and where 3= QE(1+Q)/hy,
13 = 2Q%h, (5.28)

and pr=Q(1+Q)/h.
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"T'wo features of this solution are worth noting. (i) For the disk rising freely between a pair
of rigid planes @ =1 and ¢ = 0. Then (5.27) and (5.28) show that the external % layer is
absent when /. = hy, that is to say, when the disk is midway between the planes. (ii) Both
Ekman layers on the disk have an outward radial flux § M per unit length of circumference

where M = — (v Q)} [V(0) —¢Qa]. (5.29)

Thus there is a net flux into the # = 2 component of the 1 layer (as we have seen, this carries
O(1) flux) which comes out as a source singularity strength A in the 1 layer solution with
n = 2 (figure 3). The argument leading to (5.17) and (5.21) applied to v,, w, gives

RV"(0) —hy ViA(0) — iy V2(0) = — 20} [V (0) —eQa], (5.30)

which is easily seen to be satisfied by our solution for the  layers.

of(1)

1
.
=
la———

Ficure 3. Join of the 1 layer to the Ekman layer in the disk case. Dotted line encloses the equal and
opposite fluxes from the Ekman layer which give the n = 2 field.

It remains to verify our conjecture about the n = 0 component of the % layer and to
determine the structure of the n = 1 and #n = 2 components. For the n = 0, 1 fields we must
consider the problem of solvingt

v, 5 0%, .
= —42 o (n=0,1), (5.31)
with boundary conditions
%=O on z=—hy,; (ally n=0,1), (5.32)
)
—37;’:0 on z=~hy (ally n=0,1). (5.83)
and %%":O on z=0 (—o<7<0 n=0,1). (5.34)

1 Since there are no symmetries about 4 = 0, there is no advantage in using x as ¥ will be no longer real.

78-2


http://rsta.royalsocietypublishing.org/

|
A X

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

JA \
,',/ A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

616 D. W. MOORE AND P. G. SAFFMAN
~ The boundary conditions at -+co are that,
v,—=>dPyr  (g—>—0 —hy<z<0), (5.35)
v,—>dPnr (g—>—00 0<z< hy) (5.36)
and v,—>d®p"  (g—>+00 —hy<z<hy), (5.87)

where d® = (—1)7 (yis*[n!) d"V|dE" evaluated at £ = 0+, etc. To avoid trouble with the
Fourier transform we write

v, =dPy+v (—o<9<0, —hy<2z<0), (5.38)
etc. Thus we require v—>0 (7—>-400) (5.39)

and that v satisfies (5.32), (5.33) and (5.34).
Defining the Fourier transform as in (4.40), we find, allowing for the singularity of

SRy
a2 102 4Q2J 0 (5.40)
J® — (7)1 jn+1[ Jo _ gim ~ 0
where o [JF = @07l d0—d] (2> 0) ] (5.41)
1]};” = (2m)1nlirt 1 [dO—dP] (z < 0),]
which has the general solutions
.ﬁT _ dT(a) ea3z/2§!+bT(a) e—a3z/29+J¥1)/an+l (5 42)
B = aB(“) 6“32/294-53(06) ’e~a3z/ZQ+J(Bn)/OLn+l. '
The boundary conditions (5.32) and (5.33) gives
br(a) = ap(x) e and  by(a) = ay(a) e~ **s/?, (5.43)

Now dv/0z is continuous across z = 0 for > 0 while (5.34) implies that it is continuous
across z = 0 for 7 < 0. Thus 5/ dz is continuous across z = 0 and so

Bap(a) (1—e¥/?) = aday(a) (1—e*1sl?), (5.44)
We define
~ e 1 ? io -~ — _1_ 0 o
i, (a,z) = o fo e“y(y,z)dy and J_(a,z) = o f_w e y(y, z) dy (5.45)
and introduce the condensed notation
lim 3, (a,z) =7,(04) etc. (5.46)
z—=0+

We do not know the discontinuity of v across z = 0, # < 0 and we do not know the value of
d[dzonz = 0,7 > 0. But only one of our original four functions a,, ag, b, by is still unknown.
Thus there must be a relation between the transform 7_(0+)—7_(0—) of the unknown
discontinuity and the transform (44, (0)/dz) of the unknown derivative. This relation turns

out to be

Z0  35,(0)  2Qsinh [3(hy+hy) [2Q] 547
w1~ 7 "3 sinh (@%hy[2Q) sinh (3, /20)°  (O4T)

where , Z0 = Jm—Jm, (5.48)

7_(04)—d_(0—)—
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Now it is shown in the Appendix that we can write

. 2Qsinh [o3(hp+hp)[2Q2] 1 .85,(x) (5.49)
a3sinh (a3h,/2Q) sinh (a3hy/2Q) b S_(a)
where the functions §,, §_ have the properties that
S,(¢) is analytic and non-zeroin %7 > arga > —4m, } (5.50)
S_(«) is analytic and non-zeroin —%m < arga < —3,

they are bounded and equal to one at « = 0, and

S, (@)~s,at as a—>ioo (5.51
S_(@)~s_a? as a->—ioco. 51)
Thus we can write (5.47) as
(m)
5_(o) [9-(0+) —2_(0-) azl] — 20, ). (5.52)

The left-hand side is analytic in some lower half-plane and the right-hand side is analytic
in some upper half-plane. Assuming that these half-planes overlap—and by (5.50) this will
be the case if the half-planes of analyticity of di, /dz and 7_(0+)—7_(0—) overlap—each
side of (5.52) is the analytic continuation of some function analytic in the entire « plane.t
The next step is to determine this entire function by using Liouville’s theorem.

Suppose that o1, 04)—(,0=) ~[y|* as 7->0—. (5.53)
Then w will have the same singularity as 7—0- and so
w  Pw
P IY L p-p-3
e i as 7—0+4 (5.54)

As a consequence of these ‘edge’ conditions

7_(0+)—7_(0—)~at~! as oc—>—ioo} (5.55)

and 05,.(0)/0z ~ab*? as a->ico.
Thus both sides of (5.52) are O(a?**) for large a and so the entire function in question must
be E(0) = dg+Ayat ...+ A, a0, (5.56)

where it is now clear that p+ 1 must be integral. This is in agreement with the general form
of the similarity solutions of §3.

To determine the unknown constants A4,, 4;,... we must use the boundary condition
(5.39) which gives 5_(04+) ~o(|a]-"1) as a0 (5.57)
and 7_(0—)~o(|a|™1) as a—0. (5.58)
Expressing _(0+4) —7_(0—) in terms of E(«) gives

; - Z0 Ayt Ajat...+A4,, ot
v—(0+)_v—(0’")_o¢n+1: = aes_((_xl—) pei (5.59)

1 Any singularity at & = 0 is easily shown to be removable.
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618 D. W. MOORE AND P. G. SAFFMAN
and since $_(0) = 1, we have, as ¢a—0
7@
— s~ Aga A0+ A4, ol 3, (5.60)
Consider first the n = 0 problem. Comparing the two sides of (5.60) gives
4y=4,=...=4,=0, (5.61)
p=+%%% (5.62)
and A5 =—Z0O, (5.63)

But the Kutta condition implies that the # = 0 component of the } layer solution is regular
at 7 = 0. Thus we must have Z© = 0, which implies that d;, = d. Then (5.18) shows that

d=d, = d, (5.64)

and the unique solution is w, = 0, v, = d, as we conjectured.
Consider next the n = 1 problem. Then (5.60) gives

AO = see — A3 = O’ (5.65)
p=5%%- (5.66)
and A, =—2Z0, (5.67)

We have seen that the Kutta condition permits an || % singularity in the 7 = 1 component
of the % layer velocity field, but excludes stronger singularities. Thus we must take p = 4 and
reject the larger values. The solution is now uniquely determined and, after some algebra,
we find, for 0 < z < A

2Qavis[V(0) — V5(0)]

Ll g oy (€510 el =), (5.68)

2m3 = =23 [77(0) — V4(0)]+

and for —h, <z <0

B ey 2Qowi's [VT(“)*ﬁ
o2md = [V (0) VB(O)]+_‘( e 1% S oa)

We can find v, (and hence w,) by inverting the Fourier transform. The resulting integral
can be evaluated by residues, but we will not give the details.

It appears at first sight that, according to (5.68) and (5.69) 7 behaves like «~2 as a— 0,
which would contradict our assumptions. However, if we expand, say, (5.68) about « = 0
we find that i i

0Tk
so that the regularity of 7 at @ = 0 is guaranteed by (5.22).

The problem of finding w, and v, is complicated by the delta function singularity of w, at
n = 0, z = 0. The velocity satisfies equation (5.31) and the boundary conditions (5.32) and
(5.33), and because v, is constant, the boundary condition (5.12) shows that w, = 0 on
z = 0,7 < 0; so that (5.34) still holds for the n = 2 field. However, dv/dz is now not defined
at z=0, 7 = 0 and the condition (7,04 )/dz = dv(y,0—)/oz for all 5 (used in deriving
(5.44) for the n = 0 and z = 1 fields) must be replaced for the n = 2 field by

v v My~ m
D 0-0) =2 g,0-) = B2 e, (5.11)

) (ea3z/29 + e—@3hg/Q e_“az/zg) . (5.69)

(V'(0) h—V1(0) hy—V5(0) fp), (5.70)
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where M is given by (5.29). Moreover, we cannot use d7, (0)/dz as the ‘plus function’ in
forming the Wiener-Hopf equation, but we use instead the transform of

$(/2) (7,04) + (0] 92) (1,0—)}
which is zero for 7 < 0 and is well defined for 7 > 0. We call this function F,. Then using
(5.42) and (5.43), we find that the equation analogous to (5.47) is

" . % s 2Qsinh [a®(hp+ hp) [2Q]
7-(04)=9-(0—)— a3 " *Ta3sinh (a3h,/2Q) sinh (a3h,/2Q2)
_}_iMV‘* sinh [03(hp— ky) [2Q]
4m  sinh (a®h,/2Q) sinh (a3h;/2Q)

The Wiener—Hopf problem (5.72) can now be solved as for the n = 0, 1 fields, although the
extra term complicates the calculation, and the n = 2 field can be obtained. We shall not
give the details.

A special case of this problem which has been examined experimentally (Hide & Titman
1967) is when U = 0 and @ = 1, so that the disk rotates with angular velocity €2(1+4-¢)
between rigid parallel plane walls. From (5.25), (5.26) and (5.27) we find

(5.72)

, oy - 2 _6ahp(pr—pg)
VT(O) - VB<O) == § thT‘I'hZ B—ﬁ@ (5.73)

so that, in view of (5.68) and (5.69) we have the result that the recirculating velocities of
O(v=7%) still dominate the § layer, unless 4, = ;. In this latter case, the velocities of the
1layer are O(v—%). Moreover, the problem of finding the structure of the } layers is greatly
simplified, since, by the symmetry, dv/dz = 0 on z = 0 for all (3= 0) and we no longer have
to solve a Wiener—Hopf problem. The solution is very similar to that given in §4 for the
‘split disk’ if we put ¢ = 0; the change is due to the different p in the outer } layer.

The moststriking feature of the velocity field generated by the rising disk is the recirculating
nature of the velocity field in the } layer. As we have stressed, the velocity field in the % layer
is greater by a factor O(v=%%) than that required to conserve mass. It is the geometry of the
edge of the disk which, by allowing weaker singularities in the % layer dependence on 7,
enables the strength of the velocity field to be larger without violating the Kutta condition.

Physical discussion

The analysis of this section is complex and for the benefit of the reader who does not wish
to follow the detailed mathematical analysis we will now summarize the important steps
and discuss them in a more physical way. The disk of radius a is rising with velocity U
between two planes % apart. In the Taylor column ahead of and behind the disk, there are
swirl velocities v; and axial velocities w, of order

ve~UEY wy~U. (5.74)
The Ekman number will be defined on the body size
E =v/Qa. (5.75)

The radial velocity in the Taylor column is zero. Outside the Taylor column, the geo-
strophic flow is zero. We allow for the possibility that the disk has a rotation speed UE~¥/a,
in order that the torque vanish.


http://rsta.royalsocietypublishing.org/

0
%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

620 D. W. MOORE AND P. G. SAFFMAN

The Taylor column is bounded at the horizontal ends by Ekman layers of thickness
(v/€Q)* = 0y, say, in which the velocity falls to the value on the walls. It is bounded on the
sides by Stewartson layers which have a complex sandwich structure. There are two inner
layers and one outer layer, each of thickness

0y = a(hfa)t E-. (5.76)

We shall retain the dependence on « and % separately, to cover the situations in which a/A
is large or small. The outer layer goes from the top to the bottom outside r = a, and the two
inner layers go from the body to the top and bottom inside the circumscribing cylinder.
There is a single central layer, of thickness

0y = a(hla)t E} (5.77)
extending from the top to the bottom.

In the % layers, only the viscous term v ¢%/dr? becomes important and the flow is ‘quasi-
geostrophic’, with the swirl velocity v and radial velocity « independent of height z, and the
axial velocity still small compared with the swirl velocity. In these layers, the orders of
magnitude are

vy~ UE™}, wy~ (alh)} Etvy~ (a|h)} UE}, uy~ (afh) Etvy~ (afh) U.  (5.78)
These flows are still driven by the Ekman suction and are completely determined when the
swirl velocities are specified on the central edges of the layers, i.e. on the cylinder r = a.
The } layer velocities cannot be analytic across r = ¢ and the discontinuities in velocities
and velocity derivatives are smoothed out in the § layer, in which the viscous term v ¢%w/dr?
is also important and the fluctuations in v and w are comparable.

Itis clear from (5.78) that fluid flows into the { layer at the rate U?2a. In order to distribute
this flux through the central layer and to carry it around the body, it is clear that axial

velocities of order w ~ Uad, = U(a/R)  E-} (5.79)
are necessary, with which are associated swirl and radial velocities of order
VP ~ Ualdy, u ~ Uafh. (5.80)

We can now demonstrate heuristically that the velocities (5.79) and (5.80) cannot
accommodate the jump in the } layer velocities, so that arguments based on flux conserva-
tion are insufficient to determine the qualititative order of the central layer. In general, the
1 layer swirl velocity will have jumps in v, dv/dr and d?v/dr? of order

d UE-* U 5 d? UE-* UE"!
~ ‘% —_— = —— = —— - —_— T
[7)&] UE 5 [drvi] 8% (ah)% E £, dr? Ui] 3£ o

The possible changes in these quantities due to the § velocity given by (5.80) are

Ua oty 1d 7 Us UE* [d2 7 Us UE™
[”%]:‘g:U(z) E [a‘r”%]*'s‘gﬁ%h—%’ aﬁ”%]“sg——a;?- (5.82)

The jumps in the second derivatives match exactly or equivalently u;, ~ u,. This is not an
accident, because the vertical flux in the 4 layer is proportional to the jump across it of the
second derivative of the quasi-geostrophic flow, and the orders of magnitude were picked
so that the flux would balance. The jumps in the velocity and velocity gradient across the
% layer are too small, and hence for consistency we would require that v; and dvy/dr be

(5.81)
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continuous across the % layer. However, in the present problem this requirement cannot be
satisfied (although it always can in the problems that have so far been reported on in the
literature), because it provides four equations in only three unknowns, namely the three
unknown swirl velocities at the central edges of the } layers.

A jump in dvy/dr, which physically implies a local tangential stress on the % layer, can be
accommodated by a velocity field of magnitude

vgl{l)Nw%l)NU(a/}l)‘& ~f, UV~ Ulaflh)* E-3. (5.83)

The jump in »{V is less than [v;], so that we still require vy to be continuous across the § layer.
A further condition is obtained from the requirement that the total tangential force (more
precisely couple) on the 1 layer vanish; this gives (5.22) and we now have the correct
number of three equations to determine the } layers. The objection to (5.83), and this is
why order of magnitude arguments are sometimes dangerous and precise analysis is needed,
is that it gives a jump in the second derivatives larger than that allowed by (5.81). Equiva-
lently, u{" is larger than u, or the vertical mass flux is of order E-%. However, this difficulty
is apparent rather than real because the solution can be chosen (as follows from the detailed
analysis) so that u{" vanishes at the edge of the § layer, and it also follows that the vertical
mass flux from the velocity w{’ is zero.

These physical arguments which establish the qualitative structure of the shears are
however incomplete for reasons which appear when the detailed structure of the % layer is
investigated by mathematical analysis. It appears then that 1 layer solutions can be con-
structed to match any external } layers; in other words, the dynamics of the } layer do not
impose any restriction on the } layer velocities at the central edges. In particular, a § layer
solution can be constructed to smooth out discontinuities in vy across the central layer. The
physical argument just given fixes the orders of magnitude essentially by saying that the
velocities should be as small as possible. Thus a discontinuity in vy would require axial
% layer velocities w{® ~ UE-%. However, such a plausible assumption still leaves the further
difficulty that the { layer solutions are not unique and an infinite number exist to match
any 1 layer flow field. To make the solution unique it is necessary to say something about
the singularity of the  layer equations at the edge r = a, z = 0.

The trouble has of course arisen because the assumptions that give the 1 layer are not
valid near the edge and the structure of the Ekman layer controls the permitted singularity
and thus the solution needs to be completed by matching the § layer and the Ekman layer
at the edge. However, this matching is difficult and so far has defined attack, and was there-
fore bypassed by a plausible physical hypothesis which we called a Kutta condition, and
which in effect states that the singularity should be as weak as possible. It can be shown from
a solution of the Wiener—Hopf problem for the } layer that a discontinuity in vy would lead
to a singularity like (r—a)~# in »;, so we drop it and just retain the (r—a)~* singularity which
occurs when v; is continuous but dvy/dr is not, and the (r—a)~! singularity associated with the
jump in d%;/dr2 In problems of this kind, it is sometimes possible to fix the singularity by
saying that the solution should be square integrable, but this does not work in the present
problem.

It is clear that the analysis applies with minor modification to an axisymmetric lenticular
body.

79 VoL, 264. A.
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6. THE RISING SPHERE
We replace the disk 0 < 7 < a, z = 0 of §5 by a sphere
z=1f(r) =+ (a—r)}, (6.1)
where ¢ < min (hy, hp).
The geostrophic motion vanishes for r > a, and for r < a we find that, for z > 0,

L R VY N

N R R 11 [ R A

The more complicated r-dependence of the geostrophic interior is due to the variation with
position of the thickness of the Ekman layer on the sphere. Moreover, U and ¢() contribute
different forms of swirl to the geostrophic interior and, in particular, when¢ = 0 and @ = 1
(as for a sphere rising freely between plane rigid end walls), V;(a) = V;,(a) = 0. We can
anticipate that the non-rotating sphere will produce a weaker shear layer than the rotating
one and this makes a general discussion awkward. Thus we deal with the problem in two
stages.

and forz < 0

() Sphere rising without rotation between rigid end walls

The outer } layer is identical to that for a disk and so
V=Be# ((£>0, —hy<z<hy). (6.4)
For r < a we have, where (r) = hy— (a2 —r2)},
1/v\t, 1 (v\t V. vh(r)d®V Ua
) (ﬁ) V=3 (?z) -t 20 &~ 2 (6.5)

The first term on the left represents the Ekman flux on the rigid upper plate and it is clearly
negligible compared to the second term on the left, which is the Ekman flux on the sphere.
Thus the structure of the inner shear layer is determined to leading order solely by the
Ekman layer on the sphere and it is independent of the nature of the upper boundary. We
see that the terms in (6.5) balance if J/dr ~v=% and if we write

a—r 3 "
(= =— 5% =—m% (6.6)

and retain only the largest terms in (6.5), we have

hy d2Vp (a1 oo e
é?zd_gz“_(éz) oyt Ve = 100+ 0(m ), (6.7)
where the error is due to the neglect of the Ekman flux on z = %,. The errors inherent in
(6.5) and the error introduced by replacing 4(r) by 4, are of smaller order of magnitude.
To solve (6.7) we follow Stewartson (1967) and write
{=gq7r's and Vp=v"7u,F(s) (6.8)

where g7 = ;. 28/Qfar  and  pp = —28Ua*hi Q0. (6.9)
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Then (6.7) becomes F'(s)—F(s)[st = —1. (6.10)
Let us define a solution F(s) of the homogeneous equation
Fy(s)—F,y(s)[st =0 with F,(0) =1, Fy(c0) = 0. (6.11)

Then F| is like the decaying exponential e# in the interior shear layer of the disk. We define
a solution G(s) of the inhomogeneous equation (6.10) by the requirements that
G(s)~st as s—o0  G(0) =0. (6.12)
This makes v=3u,;G(g,{) ~V;(r) as {—00, so that G is like the constant part of the interior
shear layer solution for the disk.
We can find F,, explicitly by transforming (6.10) into Bessel’s equation and we get

Fols) = est K (3s%), (6.13)
where ¢ is a numerical constant. Thus for large s, F; behaves like
sisexp (—8&s¥), (6.14)

so that F,, decays rapidly with increasing s.

We can find G in closed form by variation of parameters, but we will not write down the
rather cumbersome results, since we can get enough information to see how the matching
goes without using the explicit solutions.

Using the well-defined functions ¥, and G, we can write the general solution for the
£ layer in a by now familiar form,

Ve = viurdG(qr8) + Ar Fo(940)} (6.15)

where 4, is an unknown constant, whose dependence on v needs to be determined as it is
not obviously O(1). The region in which (6.15) holds is called a £ layer, because its width
is O(v?).

The next step is to expand both the % and the £ layer for small values of their respective
arguments; then expressing the results in terms of 7 and invoking the matching principle
(4.15) will show us what sort of 4 layer is needed to provide a match, and determine B, 4,
and the corresponding unknown 4, for the £ layer below the sphere.

For small s the differential equation shows that

Fy(s) = l—l-ks—l—%%s%—l—%%lfﬁl—l—... (6.16)
and G(s) = K's— s+ ... (6.17)

To find the numerical values of £ and £" we need the explicit solutions.
Thus, expanding (6.4) and (6.15) we find that

V = B(1—vispp+ Ldp2p2 4 ...) (6.18)
Vp = v-iurddr—visqr(kAr+K) +v5g (=) G14r) + g’ +...}p (6.19)

and similarly for z < 0, replacing 7" by B but taking u, positive, '
Vs = viud dp—virqpn(kAp+ k") +visgh (—n)? Gi4y) + bsgin®+ ...} (6.20)F

t The relative error in (6.7) and hence in (6.19) and (6.20) from which it is derived is »7%, so that it
might appear that only the first two terms in (6.19) and (6.20) are significant. However, consideration of
the more accurate form of (6.7), which retains the first term on the left in (6.5), shows that the solution for
small s is of the same form as (6.19) and (6.20), that is no new powers of s arise. Thus the coefficients of the
various powers of 7 in the expansions (6.19) and (6.20) are each correct with relative error vi4.

792
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The equations (6.18), (6.19) and (6.20) provide boundary conditions for the central
% layer as y —-4-00. Again for this region we split » and w into components

v=2p®, w =", (6.21)

where ™, w® satisfy the boundary conditions (5.85), (5.36) and (5.37) and the coefficients
d® follow from (6.18), (6.19) and (6.20). Note that fractional powers of # appear, in parti-
cular » = Z. It may seem physically artificial to select the 4 layer components according to
their dependence on 7 at infinity, but mathematically it is natural since it is the dependence
on large 5 that determines the solution. Also, the » dependence is not known yet because
Ay, Ap and B have to be found. However, we can anticipate that the 7 ordering will more or
less correspond so that ¢© will be the largest component, and so on.

The Ekman condition on z = — /A, A, is
wet 7, (6.22)
20t oy '
with completely negligible error O(v*). On the sphere, the geometry complicates the relation
and we have NN )
w(n,2) = + 5058 g {(—mFoln 23+ U (6.23)
on z=+42a¥(—p)t (—o0 <y <0),

where we have made the boundary-layer approximation to the geometry of the sphere.
Thus

w(p, £0) = =g 2~ ol 20}, (6.24)

with a relative error O(v%).

Consider now the problem for @, w©®. This is identical with the same problem for the
disk. The reason is that the coordinate stretching for the % layer flattens the sphere so that
(atleast toleading order) the 4 layer ‘sees’ a disk and a sphere in the same way. The analysis
for the disk applies and we conclude that if ¥@ = constant and w® 5 0, then 1@ ~ ¥ at
the edge. We now apply the Kutta condition to rule this possibility out. As Stewartson
(1966) has shown, the % layer joins on to the Ekman layer through a joining region whose
lateral scale is of order v%. At the joining region,

20 ~ V_%AT(Vé/V%) - - ATV_%

and this is unacceptable unless 4, is O(v7%). The last condition can be shown to lead to
inconsistencies and we conclude that the v, w© field cannot have a singularity and the
swirl velocity is continuous (to leading order) across the third layer, i.e.

w® =0, vO=B=p v A, =4, (6.25)

A further relation follows from considering the #®, w» component. Again the equations
and boundary conditions are identical with the same order component of the disk problem.
The Kutta condition (or with perhaps equal plausibility the hypothesis of minimum
singularity) fixes the singularity at the edge. Again the total stress across the } layer must
be continuous and we have

hpr@r(RAp+k') +hpppqp(kAg+ k') = Bpris, (6.26)
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From (6.25) and (6.26) we deduce A, 4; and B, and find that 4, and 4, are O(»°). Thus
the inner £ layer and outer } layer are now determined to leading order. Note that if
hy = hy, Ay = Ay = B = 0. Thus in the symmetric position the external } layer vanishes.
However, the inner £ layer is still there, being provided entirely by G(¢¢), and the orders
of magnitude and general structure of the 1 layer are unaffected.

The detailed form of ¥V and w(V is given by the analysis of § 5 on inserting the appropriate
values of d, d{P, d{P’. Again, this field carries no net flux and to leading order the 1 layeris
a closed recirculating system, driven by the discontinuity of local tangential stress, and with
an 7% singularity at the equator. Note that since 7= < v#t, the Ekman condition (6.24) is
such that the right-hand side does not affect the equation for ¥® and w> and the geometry of
the sphere has not yet entered the shear-layer structure.

We can now obtain equations for ¥®, w® (which also recirculates mass), and the field
v@, w® which carries the mass flux and which from the matching imposed by (6.19) and
(6.20) is seen to be O(v~%). Indeed the n = 2 field can be shown to satisfy the same equations
as for the rising disk and its structure is closely similar. However, the Wiener—Hopf solution
obtained in §5 will not provide the solution to the #» = Z field, which from (6.19) and (6.20)
is O(v~%%), because the Ekman condition (6.24) gives

By, £0) = e o {(—1) ) for g <0, (6.27)
where the right-hand side is O(v~%) on substituting (6.25). The problem to determine the
n = Z field is indeed somewhat more difficult than for » = 0, 1, 2 and we have not obtained
the solution. However, the order of magnitude is given by the matching argument. It
follows from (6.27) that in the vicinity of the equator, the n = Z velocities have singularities
like 5%,

To summarize the results so far, we have an inner layer of width

0s = a(hja)t E%, (6.28)

in which the swirl and radial velocities are independent of z, and the axial velocity is linear
in z, and the orders of magnitude are

v = U(hla)*E~%, wz = (alk)?E*vs, uz= (alh)?E?vs. (6.29)

7

The swirl velocity is smaller than that in the geostrophic interior because the geostrophic
velocity vanishes at 7 = a. There is an outer layer of width

in which the velocities are Oy = alkja)t £ (6:30)

vy = U(hla) E~%, wy = (afh)Y Etv;, uy = (afh) Etvy. (6.31)

The leading order motion (apart from the constant swirl) in the central } layer, which

has width 8, = a(hja)s EY, (6.32)
is a recirculating eddy in which the velocities are

vy~wy~ Ulalk)# E¥%, uy~ (alh)t Eoy. (6.33)

The mass fluxin the § layer is carried by the smaller velocity of order Ua/d;. Also, the leading
order flow has an inverse square root singularity where the % layer meets the Ekman layer.
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626 D. W. MOORE AND P. G. SAFFMAN

Note that the structure of the shear layers is independent to leading order of the nature
of the upper surface, because the leading order boundary condition on the upper surface
is w=0.

(ii) Sphere rotating without rising
In the special case &, = hz and @ = 1 (upper surface rigid) this problem was studied by
Stewartson (1967). We shall consider the general case since, just as for the disk, the sym-
metric situation is atypical. In fact, the symmetric case is similar to the split disk problem
considered in §4.
The outer layer is still given by (6.4) replacing B by D. The inner layer is now given by

hy A2V, )
20 4 ( ) g0t Vr—eQa) = O(Fpve), (6.34)

so that Vp=eQa+CpFy(s) (6.35)

where F(s) is given by (6.13). There is a similar equation for V.
Expanding to find matching conditions for the i layer, we find

V = D(1—vispp+ Lvip2p2+...), (6.36)
Ve — eQat-Cy(1— gy 305 (— 1)+ O (), (6.37)
and Vg = eQa+Cp(1 —visqphn +33visqi (—n)i+ 0 (%)). (6.38)

Thus the 1 layer has velocity fields corresponding ton = 0,1, %, 2, etc. The n = 0,1 com-
ponents clearly satisfy the same equations as for the non-rotating case, and we deduce, as
before, continuity of velocity and total tangential stress. Then from (6.36), (6.37) and (6.38),

Cr+eQa = Cy+eQa=D (6.39)
and hyCrqrk~+hyCyqpk = visDhp. (6.40)
. “s¢Qahp
To leading order, D =¢Qa, Cp=Cy= Jmesay 6.41
cading ’ B (hpqrt+hpgp) k ( )

Thus the outer layer now has a swirl velocity O(y~#) larger than those in the inner £ layer.
The n = 1 field inside the } layer is again given by the solution for the rising disk, with
appropriate choices of the constants d®. The essential feature is that the velocity field
recirculates and is O(evi¥). Also the velocities have singularities like 7% at the equator.
(In the special symmetrical case, vV is proportional to 7 and w» = 0.) The Ekman condition
(6.24) should now be . s
yiE

w(y, £0) =557 57{(—77)%[?)(% +0) —eQal}, (6.42)

and clearly the right-hand side is unimportant for the n = 0, 1 fields.

The calculation of the n = % field proceeds as for the non-rotating case. The velocities are
now O(evst), and equation (6 42) has to be employed with v = ¢Qa+ Cy. or eQa+Cy on the
right-hand side. For the symmetric case, w = 0 generally for 7 > @, z = 0 and the n = £ field
can be found without solving a Wiener—Hopf problem; Stewartson (1966) has given closed
form expressions for the velocities.
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The n = 2 field, which carries the mass flux, is not now given by the analysis previously
carried out. There are two reasons. First, the v® field makes a contribution through the
Ekman condition (6.42) of the same order in v as that imposed by the matching. And
secondly, the error in (6.36) also produces terms of the same order. The structure of the
n = 2 field is not independent of the upper boundary condition because the higher approxi-
mation to (6.34) brings in Q. The velocities are O(ev?).

To sum up for the case of rotation without translation, the variation of inner layer
velocity is (writing explicitly the dependence on #£)

vz ~¢Qa(h/a)s Exs (6.43)
with the other velocities given by (6.29). The outer layer swirl velocity is
vy ~eQa (6.44)

with other components given by (6.31).
Inside the central layer, in addition to the uniform swirl, there are fluctuations

vy ~ wy ~ €Qa(alh)? Ev*, (6.45)

unless the body is midway between the end walls, in which case the relevant order is
¢QaEs¥ (afh)%:. Mass flux in the } layer is carried by axial velocities of order ¢QaE?¥(a/k)?.
The mass flux carried by the layer is of order eQa2?E?* per unit length of circumference.

Comparing these results with (6.29), (6.31) and (6.33) for the case of rising without
rotation, and putting ¢ ~ E~%, we see that rotation generally produces velocities that are
larger by £-¢%in the inner and central layer and £~ in the outer layer. In any real situation,
these differences are of course academic.

7. A viscous TAYLOR COLUMN

The analysis of shear layers breaks down when the thickness of the layer is not small
compared with the radius of the body. For the rising disk, the analysis required that

op<a le. Ei < (a/h)* or hla< E%. (7.1)
For the sphere, it is more appropriate to apply the restriction to the inner £ layer, giving
E? < (afh)? (7.2)

which, however, is essentially the same condition. It is also necessary if 4 < a that 4 should
be large compared with the Ekman layer thickness, i.e.

hla > E%. (7.3)

The conditions (7.1) or (7.2) and (7.3) are necessary for the analysis of previous sections to
apply. (The matter of sufficiency is more obscure, since not only must inertial effects be
negligible but the stability of the flows is an open question.)

It is now interesting to see what happens as #/a is increased, keeping the Ekman number
constant. When %/a ~ E-%, the inner and outer layers are comparable in width to the body
and the concept of shear layers is ‘nvalid. However, examination of the shearlayer equations


http://rsta.royalsocietypublishing.org/

I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

628 D. W. MOORE AND P. G. SAFFMAN

shows that the assumption of a thin inner and outer layer was used only in approxi-
mating derivatives d/dr by 9/dx and replacing 7 by 4, i.e. in employing a ‘boundary layer’
approximation to the geometry. The key step which led to the inner and outer layer was the
introduction of the azimuthal viscous stress, while still neglecting both the axial viscous
stress (which becomes important in the % layer) and the radial stress (which is never
important). Hence provided the % layer remains thin, i.e.

) 3

2 (%) R

: (a) Et<l, (7.4)
which is satisfied when k/a ~ E-} if E¥ < 1, the velocity outside the § layer is given by (for
axisymmetrical flow)

v (d2 1d 1 zd
— Vi), “%Qﬁ(Wﬁd—Fﬁ) V, w=—2 3 0+ W), (7.5)

It is readily verified that (7.5) gives an approximate solution of the equations of motion
provided (7.4) is satisfied. The swirl velocity V(r) is determined by mass continuity. Thus
for a body of shape z = f(r) rising with velocity U between plane walls, we have for
z>0,r<a

V(j%—é’(f)) 2 rar ]V 5@( )VT ;(V)%“_—“[H{f i = AU (7.6)

with similar equations for V; in (z < 0, r < a) and V; in (r > a).

It is clear that when k/a < E~%, we can split up this equation into a geostrophic region
and thin shear layers on r = a. For #/a ~ E}, the viscous term is never negligible, and we
no longer have a geostrophic region in the flow. The azimuthal and radial (but not the
axial) velocities are independent of height, and in this sense we can continue to speak about
a Taylor column, but its interior is directly affected by viscous forces.

The solutions of (7.6) and the two similar equations cannot be analytic across r = a, and
a 1 layer still suffices to match up the velocities and provide the jump conditions across
r = a. The application of a Kutta condition is still needed and we find that the velocity and
total tangential stress are continuous across 7 = a. The matching must be done directly
with the solutions of (7.6) and the similar equations, but this occasions no difficulty. It is
now obvious that there was in fact no need to introduce the % and £ layers of the previous
analysis, except as a matter of analytical convenience, for these layers are contained in
(7.6) and the similar equations. However, from a practical standpoint the ordinary
differential equation (7.6) is hard to solve in closed form, and except for the simplest
geometries one must either satisfy (7.1) and (7.2), or use numerical work.

As an example of the effect of large plate gap, we shall consider the two-dimensional
problem of a strip rising with velocity U between rigid horizontal walls z = A, —hz. With
Cartesian coordinates (x,y,z) the body is —a < x < a, z= 0, and all velocities are inde-
pendent of y. The velocities parallel to the Cartesian axes are (u,v,w). Then outside thin
shear layers on ¥ = 4-a,

v d?V vz A3V
V=V, v=gg g Y= Tande W (7.7)
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Application of the Ekman suction relations gives

e =~ Vs SO oo <
_(Q smh (ppx/v¥)
Valx) = (_) I: Psinh (pBa/Vi).‘J (<0 |d<a) (7.9)
Va(x) = (%)% UBete-at  (_p, <z <hp, x>a), (7.10)
where Po=2Q%hy,  py = 2Q%hy, p2 = 2Q%/h. (7.11)

We have assumed that the ‘swirl’ velocity is odd in x. (Actually, this would follow from the
Jjump conditions with a little labour.)
From the continuity of V and total tangential stress across x = a, we find

_ H(hp—hy) +apyhycoth (pyafd) —aprhycoth (prafpt) _
phtprhycoth (prafvt) +pyhy coth (pyat) —dp=Ar—a. (1.12)

Expanding these solutions about x = a gives, as before, matching conditions for the
1layer solution and it is clear that the } layer structure is identical with thatobtained earlier
for the rising disk.

It is of interest to calculate the drag. For small Ekman number, the dominant contribu-
tion is from the pressuref, which is given (everywhere) by

—2Qpv = — dp[ox. (7.13)

An elementary calculation gives

3 3 :
D= 4pQU(9) 24°_ Ayav coth ( ppa/vt) — coth (prafvt )—l— 7 —I—A 5 ] (7.14)
4 3 bs b7
In the special case when A, = &y (7.14) becomes
Q\t .r2 (ER ER\-t 1 (ER?
D=4pUQ(7) a8 g—(az) ch( ) +2(a2)]. (7.15)

The drag decreases as the relative thickness (£h2%/a2) of the } layer increases. This calcula-
tion is valid provided the distance between the end walls is not so large that the 4 layer
becomes thick, i.e. provided (7.4) is satisfied.

When £ is so large that

By s g, By ey g, (7.16)

the swirl velocities become o(v—%) and the drag given by (7.14) is

8 pQ2Uab 1
D= T (h +h) (7.17)

+ The contribution from the normal viscous stresses is O(v?).

8o Vor. 264. A.
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8. UNBOUNDED FLOW

We find that we cannot determine the flow when %/a is comparable with £-1. However,
when /%/a becomes large compared with E-1, we find below that the end surfaces can be
neglected and a Taylor column of finite length appears. The Taylor column produced by
a disk moving steadily in an unbounded slightly viscous fluid was found by Morrison &
Morgan (1956). For the purpose of comparison with previous work, we shall now rederive
their solution in a more direct way.

Outside the Ekman layer on the body, the z-derivatives in the viscous stresses are
negligible and the (linearized) equations of motion are

—QQv=—% %‘?’ (8.1)
2Qu = v(%Jr;—%—%), (8.2)
}aﬁr(ur)jugz@ — 0. (8.4)

We have dropped the viscous term in the radial momentum equation (8.1), because an
argument similar to that in §2 shows that this term is negligible compared with the Coriolis
term if the thickness of the shear layer is large compared with the width of the Ekman layer.
We cannot, however, make the boundary-layer approximation in the other viscous terms,
replacing 0%/dr?+ (1/r) dv/dr—v/[r? by just 0%v/dr?, because the shear layers in which viscosity
is important will fatten away from the body where viscosity damps out the disturbance and
their horizontal scale will become comparable with the body size. In other words, treating
the shear layers as thin surfaces will not give a uniformly valid solution. The approxima-
tions in (8.1) to (8.4) can be checked a posteriori.
The boundary conditions are

u—>0, v—>0, w—>0 as 7r24+z2->00, (8.5)
together with the Ekman compatibility relation
1/v\P1 0
w—U=i§(ﬁ) ;a—r(rv) on r<a (z=40), (8.6)

where U is the vertical velocity of the disk. By inspection, it is clear that # and v are odd
functions of z, and w is even. We consider the solution for z > 0. In particular

v=0 (z=0, r>a). (8.7)
It is immediate that v = f " A(K) J (kr) e dE, (8.8)
0
w=— f " AR Jy(kr) e d, (8.9)
0
Vv «© 3
u=—25 j AR S (k) e, 8.10)

T A similar analysis has been given by W. S. Childress (unpublished).
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give a solution of the equations. From the boundary conditions (8.6) and (8.7), we obtain
the dual integral equations

f:A(k) [1—% (?Vz)% k:l Jolkr)dk = —U  (r <a), (8.11)

fwA(/c) Sk dk=0 (r>a). (8.12)

For E* < 1, the square bracket in (8.11) can be replaced by unity} and we have the well
known solution

2Ua sin ka
A =2 (cos/m— . ) (8.13)
Substitution into (8.8), (8.9) and (8.10) gives the solution of Morrison & Morgan.
For |r—a| > (vz/2Q)%, we have a Taylor column with velocities
2U 7
w = U, 1):-——’”—((1—2‘:‘;2’)% (T<a), (8.14)
2U(. _,a a .
w-«7{sm ;——m)%} (v=0 r>a). (8.15)
Note that fo rwdr = 0,
0

so that there is no net mass flow across any horizontal plane. The jumps in velocity across
r = a are smoothed out in the shear layer of thickness

8~ (vz[2Q)3. (8.16)

When z ~ a/E, the shear layer is comparable to the body in horizontal dimension and the
velocities start decaying to zero.

To determine the structure of the shear layers for z < a/E, we replace the integrand by its
asymptotic value for large argument. The justification is that as r — a the integrand loses its
oscillatory character and the integral is dominated by contributions from large £. Then

© 3
W~ _2Ua J‘ cos ka (1) cos (kr—z) e k222 4k
m 0 4

wkr
~— (7%) (27?)% U f : ¢ (cos pC +-sin pl) %, (8.17)
where {= r_;:; (%2)% (8.18)
Thus the shear layer contains velocities O (v~%). For large positive ¢, (8.17) becomes
wN_(%)% (2%2)*%[: (Cosp+sinp)%=——2—;q(r—f%~%, (8.19)

which matches the asymptotic form of the velocity outside the Taylor column. For large
negative {, the expression (8.17) tends to zero to this order, as it must since the velocity

1 The effect of the neglected term can be found by placing it on the right-hand side of (8.11) and inserting

(8.13) for A(k). This is equivalent to calculating the higher order flow induced by the weak Ekman suction
as done by W. S. Childress (unpublished).

80-2
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inside the column is o(y~*). Similar results hold for ». The shear-layer structure corresponds
to the similarity solution of §3 with m = —3.

The drag on the body is readily found to have the value
D =18UQa3 (8.20)

when equation (8.1) is integrated to give the pressure using the velocity field given by
(8.14). Note that in contrast with the bounded case, the drag is independent of the viscosity.
It agrees with value found by Grace (1926) and Stewartson (1952) by an unsteady inviscid
analysis. The swirl velocity is O(1) inside the column, as compared with O(v~%) for the
bounded case, and the Ekman layer is therefore weak. Thus to leading order, the boundary
condition (8.6) could have been replaced by the simpler condition w = U. It is clear now
that the solution obtained for the disk holds for an arbitrary body of revolution (provided its
length is not comparable with a/E), and that the drag is likewise independent of the shape.

It is noteworthy that the flow field near the body is independent of viscosity, outside the
shear layers, and yet depends on the correct form of the viscous stresses being employed.
Thus if we had made the boundary-layer approximation to the viscous stresses and the
equation of continuity, we would have found a Taylor column with velocities

Ur
V= Te—mp YT U (r<a),
e (8.21)

(P—a)i[r+ (P—a?)}]

The drag would then be greater by a factor 7 than the true value. The reason for the
qualitative difference is as follows. The Taylor—Proudman theorem still holds as an approxi-
mation, but the geostrophic flow is not constrained by Ekman layers on end walls as in the
bounded case but by the region where the shear layer fattens and disappears. This is where
the fluid picks up its ‘swirl’ and this region must be described properly and not by the
boundary-layer approximation. It is indeed strange that the structure of the shear layer
near the disk cannot be found by a local analysis, but the strong vertical constraint imposed
by the rotation is responsible.

v=0, w= (r> a).

AprpPENDIX 1. THE WIENER-HOPF FACTORIZATION
The analysis leading to equation (5.51) is now outlined. Consider the infinite product

e~ i (v3) (50553

4 é;g_g;z . (A 1)

It is easily shown that the product converges. The function G(z) is entire with zeros on the
negative real axis and G(0) = 1. By virtue of the formula

sinmz i z?2
= I (1-5), (A2)
sin 7723

it follows that 3
mZ

= [G(z) G(wz) G(—0?%2)] [G(—z) G(—wz) G(v%2)]

~ H(z)H(~2), say (A3)
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where w = €273 and w? = e~271/3 are cube roots of unity. The function H(z) is entire and has
its zeros in §m > arg z > %w; this region corresponds to the upper half of the a-plane.
The behaviour of G(z) as z—>o0 is required. We start with the result that

_1d
z%2dz

z
n(z-+nb)

InG(z) = i ~3lnz+§% (—m<argz<m), (A4)
1 0

where the b, are numbers that can be expressed as values of the Riemann Zeta-function.

This result can be proved by expressing the series, with the aid of the Euler-Plana formula

(Whittaker & Watson 1950, p. 145), in terms of integrals and then finding asymptotic forms

of the integrals. The argument is long and will be omitted. For reference, we note that

by=7 b,=(=1)"{(1—3n), (A5)

and in particular b5 = }. [These values can be obtained formally by the use of divergent
series. |
Integrating (A 4), we find for —7 < argz <,

InG(z) ~—2Inz+ 328 (1—)) — $ 2—byz—bylnz+ A+ 3

A EEN

To determine the constant 4, we note that, from (A1) and the infinite product expression
for I'(z),

InG(z) +1In G(wz) +1n G(0?z) = —8lnz—yz3—InI'(23)
< (_1)n—an

~—323 —y)23—3lnz—1 —y T T
32%Inz+ (1—y)z2—3Inz—%1n (2m) ngl Sn(2n—1) 7’ (A7)
for |arg z| < 4m. Comparing (A 6) and (A7), we find all terms agree and that
4 =—%In(2m). (A8)
To remove the non-algebraic behaviour of G(z) at co, we define
G(z) = G(2)/exp[—28Inz+ 323(1 —y) — 3b, 28— b, 2], (A9)
with the plane cut along argz = . Then
A 1 2 b,
X G(Z) ~ W exp l:; m‘:ﬁ] (IargZI < 77), (A 10)
and G(0) = 1.
We define the function
A(z) = G(2) G(wz) G(—w?2). (A11)
Then this function is analytic and without zeros in —7 < argz < 4=, and to leading order
A —i
Hz)~—F—

as z—00 in this sector. Similarly, H(—z) is analytic and non-zero in 0 < argz < 47, and
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in this sector. Paying careful attention to the argument of In z, we find that
H(z) A(—z) = em# (sinnz’) [nz3. (A14)

The factorization of (5.49) into ‘plus’ and ‘minus’ functions is now straightforward on

putting z oc ¢ €i7/6, Since H(0) = 1, we can ensure, by choice of the constant factor, that
S_(0) =1and S, (0) = 1.
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